Introduction to Lie algebras and representation theory

James E. Humphreys

This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, Euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are more demanding.This text grew out of lectures which the author gave at the N.S.F. Advanced Science Seminar on Algebraic Groups at Bowdoin College in 1968.

「Nielsen BookData」より

[目次]

  • I. Basic Concepts.- 1. Definitions and first examples.- 1.1 The notion of Lie algebra.- 1.2 Linear Lie algebras.- 1.3 Lie algebras of derivations.- 1.4 Abstract Lie algebras.- 2. Ideals and homomorphisms.- 2.1 Ideals.- 2.2 Homomorphisms and representations.- 2.3 Automorphisms.- 3. Solvable and nilpotent Lie algebras.- 3.1 Solvability.- 3.2 Nilpotency.- 3.3 Proof of Engel's Theorem.- II. Semisimple Lie Algebras.- 4. Theorems of Lie and Cartan.- 4.1 Lie's Theorem.- 4.2 Jordan-Chevalley decomposition.- 4.3 Cartan's Criterion.- 5. Killing form.- 5.1 Criterion for semisimplicity.- 5.2 Simple ideals of L.- 5.3 Inner derivations.- 5.4 Abstract Jordan decomposition.- 6. Complete reducibility of representations.- 6.1 Modules.- 6.2 Casimir element of a representation.- 6.3 Weyl's Theorem.- 6.4 Preservation of Jordan decomposition.- 7. Representations of sl (2, F).- 7.1 Weights and maximal vectors.- 7.2 Classification of irreducible modules.- 8. Root space decomposition.- 8.1 Maximal toral subalgebras and roots.- 8.2 Centralizer of H.- 8.3 Orthogonality properties.- 8.4 Integrality properties.- 8.5 Rationality properties Summary.- III. Root Systems.- 9. Axiomatics.- 9.1 Reflections in a euclidean space.- 9.2 Root systems.- 9.3 Examples.- 9.4 Pairs of roots.- 10. Simple roots and Weyl group.- 10.1 Bases and Weyl chambers.- 10.2 Lemmas on simple roots.- 10.3 The Weyl group.- 10.4 Irreducible root systems.- 11. Classification.- 11.1 Cartan matrix of ?.- 11.2 Coxeter graphs and Dynkin diagrams.- 11.3 Irreducible components.- 11.4 Classification theorem.- 12. Construction of root systems and automorphisms.- 12.1 Construction of types A-G.- 12.2 Automorphisms of ?.- 13. Abstract theory of weights.- 13.1 Weights.- 13.2 Dominant weights.- 13.3 The weight ?.- 13.4 Saturated sets of weights.- IV. Isomorphism and Conjugacy Theorems.- 14. Isomorphism theorem.- 14.1 Reduction to the simple case.- 14.2 Isomorphism theorem.- 14.3 Automorphisms.- 15. Cartan subalgebras.- 15.1 Decomposition of L relative to ad x.- 15.2 Engel subalgebras.- 15.3 Cartan subalgebras.- 15.4 Functorial properties.- 16. Conjugacy theorems.- 16.1 The group g (L).- 16.2 Conjugacy of CSA's (solvable case).- 16.3 Borel subalgebras.- 16.4 Conjugacy of Borel subalgebras.- 16.5 Automorphism groups.- V. Existence Theorem.- 17. Universal enveloping algebras.- 17.1 Tensor and symmetric algebras.- 17.2 Construction of U(L).- 17.3 PBW Theorem and consequences.- 17.4 Proof of PBW Theorem.- 17.5 Free Lie algebras.- 17. Generators and relations.- 17.1 Relations satisfied by L.- 17.2 Consequences of (S1)-(S3).- 17.3 Serre's Theorem.- 17.4 Application: Existence and uniqueness theorems.- 18. The simple algebras.- 18.1 Criterion for semisimplicity.- 18.2 The classical algebras.- 18.3 The algebra G2.- VI. Representation Theory.- 20. Weights and maximal vectors.- 20.1 Weight spaces.- 20.2 Standard cyclic modules.- 20.3 Existence and uniqueness theorems.- 21. Finite dimensional modules.- 21.1 Necessary condition for finite dimension.- 21.2 Sufficient condition for finite dimension.- 21.3 Weight strings and weight diagrams.- 21.4 Generators and relations for V(?).- 22. Multiplicity formula.- 22.1 A universal Casimir element.- 22.2 Traces on weight spaces.- 22.3 Freudenthal's formula.- 22.4 Examples.- 22.5 Formal characters.- 23. Characters.- 23.1 Invariant polynomial functions.- 23.2 Standard cyclic modules and characters.- 23.3 Harish-Chandra's Theorem.- 24. Formulas of Weyl, Kostant, and Steinberg.- 24.1 Some functions on H*.- 24.2 Kostant's multiplicity formula.- 24.3 Weyl's formulas.- 24.4 Steinberg's formula.- VII. Chevalley Algebras and Groups.- 25. Chevalley basis of L.- 25.1 Pairs of roots.- 25.2 Existence of a Chevalley basis.- 25.3 Uniqueness questions.- 25.4 Reduction modulo a prime.- 25.5 Construction of Chevalley groups (adjoint type).- 26. Kostant's Theorem.- 26.1 A combinatorial lemma.- 26.2 Special case: sl (2, F).- 26.3 Lemmas on commutation.- 26.4 Proof of Kostant's Theorem.- 27. Admissible lattices.- 27.1 Existence of admissible lattices.- 27.2 Stabilizer of an admissible lattice.- 27.3 Variation of admissible lattice.- 27.4 Passage to an arbitrary field.- 27.5 Survey of related results.- References.- Afterword (1994).- Index of Terminology.- Index of Symbols.

「Nielsen BookData」より

[目次]

  • I. Basic Concepts.- 1. Definitions and first examples.- 1.1 The notion of Lie algebra.- 1.2 Linear Lie algebras.- 1.3 Lie algebras of derivations.- 1.4 Abstract Lie algebras.- 2. Ideals and homomorphisms.- 2.1 Ideals.- 2.2 Homomorphisms and representations.- 2.3 Automorphisms.- 3. Solvable and nilpotent Lie algebras.- 3.1 Solvability.- 3.2 Nilpotency.- 3.3 Proof of Engel's Theorem.- II. Semisimple Lie Algebras.- 4. Theorems of Lie and Cartan.- 4.1 Lie's Theorem.- 4.2 Jordan-Chevalley decomposition.- 4.3 Cartan's Criterion.- 5. Killing form.- 5.1 Criterion for semisimplicity.- 5.2 Simple ideals of L.- 5.3 Inner derivations.- 5.4 Abstract Jordan decomposition.- 6. Complete reducibility of representations.- 6.1 Modules.- 6.2 Casimir element of a representation.- 6.3 Weyl's Theorem.- 6.4 Preservation of Jordan decomposition.- 7. Representations of sl (2, F).- 7.1 Weights and maximal vectors.- 7.2 Classification of irreducible modules.- 8. Root space decomposition.- 8.1 Maximal toral subalgebras and roots.- 8.2 Centralizer of H.- 8.3 Orthogonality properties.- 8.4 Integrality properties.- 8.5 Rationality properties Summary.- III. Root Systems.- 9. Axiomatics.- 9.1 Reflections in a euclidean space.- 9.2 Root systems.- 9.3 Examples.- 9.4 Pairs of roots.- 10. Simple roots and Weyl group.- 10.1 Bases and Weyl chambers.- 10.2 Lemmas on simple roots.- 10.3 The Weyl group.- 10.4 Irreducible root systems.- 11. Classification.- 11.1 Cartan matrix of ?.- 11.2 Coxeter graphs and Dynkin diagrams.- 11.3 Irreducible components.- 11.4 Classification theorem.- 12. Construction of root systems and automorphisms.- 12.1 Construction of types A-G.- 12.2 Automorphisms of ?.- 13. Abstract theory of weights.- 13.1 Weights.- 13.2 Dominant weights.- 13.3 The weight ?.- 13.4 Saturated sets of weights.- IV. Isomorphism and Conjugacy Theorems.- 14. Isomorphism theorem.- 14.1 Reduction to the simple case.- 14.2 Isomorphism theorem.- 14.3 Automorphisms.- 15. Cartan subalgebras.- 15.1 Decomposition of L relative to ad x.- 15.2 Engel subalgebras.- 15.3 Cartan subalgebras.- 15.4 Functorial properties.- 16. Conjugacy theorems.- 16.1 The group g (L).- 16.2 Conjugacy of CSA's (solvable case).- 16.3 Borel subalgebras.- 16.4 Conjugacy of Borel subalgebras.- 16.5 Automorphism groups.- V. Existence Theorem.- 17. Universal enveloping algebras.- 17.1 Tensor and symmetric algebras.- 17.2 Construction of U(L).- 17.3 PBW Theorem and consequences.- 17.4 Proof of PBW Theorem.- 17.5 Free Lie algebras.- 17. Generators and relations.- 17.1 Relations satisfied by L.- 17.2 Consequences of (S1)-(S3).- 17.3 Serre's Theorem.- 17.4 Application: Existence and uniqueness theorems.- 18. The simple algebras.- 18.1 Criterion for semisimplicity.- 18.2 The classical algebras.- 18.3 The algebra G2.- VI. Representation Theory.- 20. Weights and maximal vectors.- 20.1 Weight spaces.- 20.2 Standard cyclic modules.- 20.3 Existence and uniqueness theorems.- 21. Finite dimensional modules.- 21.1 Necessary condition for finite dimension.- 21.2 Sufficient condition for finite dimension.- 21.3 Weight strings and weight diagrams.- 21.4 Generators and relations for V(?).- 22. Multiplicity formula.- 22.1 A universal Casimir element.- 22.2 Traces on weight spaces.- 22.3 Freudenthal's formula.- 22.4 Examples.- 22.5 Formal characters.- 23. Characters.- 23.1 Invariant polynomial functions.- 23.2 Standard cyclic modules and characters.- 23.3 Harish-Chandra's Theorem.- 24. Formulas of Weyl, Kostant, and Steinberg.- 24.1 Some functions on H*.- 24.2 Kostant's multiplicity formula.- 24.3 Weyl's formulas.- 24.4 Steinberg's formula.- VII. Chevalley Algebras and Groups.- 25. Chevalley basis of L.- 25.1 Pairs of roots.- 25.2 Existence of a Chevalley basis.- 25.3 Uniqueness questions.- 25.4 Reduction modulo a prime.- 25.5 Construction of Chevalley groups (adjoint type).- 26. Kostant's Theorem.- 26.1 A combinatorial lemma.- 26.2 Special case: sl (2, F).- 26.3 Lemmas on commutation.- 26.4 Proof of Kostant's Theorem.- 27. Admissible lattices.- 27.1 Existence of admissible lattices.- 27.2 Stabilizer of an admissible lattice.- 27.3 Variation of admissible lattice.- 27.4 Passage to an arbitrary field.- 27.5 Survey of related results.- References.- Afterword (1994).- Index of Terminology.- Index of Symbols.

「Nielsen BookData」より

この本の情報

書名 Introduction to Lie algebras and representation theory
著作者等 Humphreys, James E.
Humphreys J.E.
シリーズ名 Graduate texts in mathematics
出版元 Springer-Verlag
刊行年月 1997, c1972
版表示 7th corr. print
ページ数 xii, 173 p.
大きさ 25 cm
ISBN 0387900527
3540900527
3540900535
0387900535
NCID BA31190833
※クリックでCiNii Booksを表示
言語 英語
出版国 アメリカ合衆国
この本を: 
このエントリーをはてなブックマークに追加

このページを印刷

外部サイトで検索

この本と繋がる本を検索

ウィキペディアから連想